淡江大學機構典藏:Item 987654321/127370
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8199273      在线人数 : 8115
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/127370


    题名: Meta Network for Flow-Based Image Style Transfer
    作者: Yu, Yihjia Tsai;Hsiau-Wen Lin;Hwei Jen Lin;Chii-Jen Chen;Chen-Hsiang
    关键词: meta learning;image style transfer;convolutional neural network;instance normalization;adversarial learning;flow-based model
    日期: 2025-05-16
    上传时间: 2025-05-23 12:05:13 (UTC+8)
    出版者: Multidisciplinary Digital Publishing Institute
    摘要: A style transfer aims to produce synthesized images that retain the content of one image while adopting the artistic style of another. Traditional style transfer methods often require training separate transformation networks for each new style, limiting their adaptability and scalability. To address this challenge, we propose a flow-based image style transfer framework that integrates Randomized Hierarchy Flow (RH Flow) and a meta network for adaptive parameter generation. The meta network dynamically produces the RH Flow parameters conditioned on the style image, enabling efficient and flexible style adaptation without retraining for new styles. RH Flow enhances feature interaction by introducing a random permutation of the feature sub-blocks before hierarchical coupling, promoting diverse and expressive stylization while preserving the content structure. Our experimental results demonstrate that Meta FIST achieves superior content retention, style fidelity, and adaptability compared to existing approaches.
    關聯: Electronics 2025, 14(10) p.2035
    DOI: 10.3390/electronics14102035
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML4检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈