淡江大學機構典藏:Item 987654321/127369
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8274327      線上人數 : 7233
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/127369


    題名: Source-Free Domain Adaptation via Enhanced Self-Supervised Learning
    作者: Lin, ih-Pin Yeh;Yihjia Tsai;Hsiau-Wen Lin;Hwei Jen
    關鍵詞: Source free domain adaptation;drop block;semi-supervised learning;IBN-Net;GridMask
    日期: 2025-05-19
    上傳時間: 2025-05-23 12:05:08 (UTC+8)
    出版者: World Scientific Publishing Co
    摘要: This paper addresses the challenge of Source-free Domain Adaptation (SFDA), where knowledge is transferred from a labeled source domain to an unlabeled target domain without requiring access to the source data during adaptation. Traditional Unsupervised Domain Adaptation (UDA) methods typically depend on source data availability during training, which raises concerns related to privacy, security, and scalability. Our proposed approach eliminates this dependency by leveraging only a pre-trained source model for adaptation to the target domain. We introduce a comprehensive framework that incorporates iterative centroid refinement for pseudo-labeling, enhanced self-supervised learning strategies, advanced regularization techniques, and dynamic loss weighting mechanisms. These innovations improve feature alignment and classification performance in the target domain. Extensive experiments conducted on diverse datasets, including digital and object benchmarks, demonstrate that our method consistently outperforms state-of-the-art techniques in both accuracy and robustness. Additionally, this study delves into the theoretical foundations of SFDA, providing insights into its efficacy and exploring its practical applications across various domains.
    關聯: International Journal of Pattern Recognition and Artificial Intelligence 39(07),p.2552007 (2025)
    DOI: 10.1142/S021800142552007X
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML5檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋