淡江大學機構典藏:Item 987654321/126990
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8292583      在线人数 : 6989
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126990


    題名: Image Outpainting Based On Attention Model
    其他題名: 基於注意模型的圖像擴展
    作者: Tai, Wei-Chien;Yen, Shwu-Huey;Tsai, Yihjia
    關鍵詞: image outpainting;image inpainting;attention module;Squeeze Excitation Network (SEnet);discriminator
    日期: 2022-10-24
    上傳時間: 2025-03-20 12:05:46 (UTC+8)
    摘要: Along the advanced progresses on deep neural networks, there are many impressive results on image inpainting. Consequently, several research are trying to transfer successful experiences into image outpainting. Contextual attention net is one of the popular architectural units being applied to outpainting. We argue that it may not as suitable when embedded in an outpainting network. Instead, we adopt SEnet for it has global receptive field and channel-wise feature recalibration. This is very helpful for image outpainting. We also propose a local discriminator mechanism to decide whether a randomly select partial image is a real one. By ‘randomness’, the generator can produce a realistic result.
    DOI: 10.6846/TKU.2022.00658
    顯示於類別:[資訊工程學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML10檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋