淡江大學機構典藏:Item 987654321/126982
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8200690      線上人數 : 7472
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126982


    題名: Strategic Integration of Attention Modules in Object Detection: A Study on Regurgitation Echocardiography Dataset
    作者: Chen, Shih-Hsin;Chen, Yi-Hui;CHEN, HSIN-AN;TIEN, CHENG-WEI;Eleazar, Yaro Imiye Franck
    關鍵詞: Echocardiography, Object Detection, YOLO, Attention Modules
    日期: 2025-04-22
    上傳時間: 2025-03-20 12:05:20 (UTC+8)
    摘要: Several attention modules—such as SENet, CBAM, and SimAM—have been successfully applied in image classification tasks and could be integrated into object detection frameworks like YOLOv5, YOLOv7, and YOLOv9. However, the optimal insertion point within these detection architectures—whether in the backbone, neck, or head—remains an open question. In this study, we systematically investigate the effects of incorporating attention modules at various network locations. Experiments conducted on a regurgitation dataset of echocardiography images demonstrate that strategically inserting attention modules significantly improves performance, as measured by the mAP50 metric. Notably, the CBAM module proves particularly effective for the task at hand.
    顯示於類別:[資訊工程學系暨研究所] 會議論文

    文件中的檔案:

    沒有與此文件相關的檔案.

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋