淡江大學機構典藏:Item 987654321/126982
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8164038      在线人数 : 7853
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126982


    题名: Strategic Integration of Attention Modules in Object Detection: A Study on Regurgitation Echocardiography Dataset
    作者: Chen, Shih-Hsin;Chen, Yi-Hui;CHEN, HSIN-AN;TIEN, CHENG-WEI;Eleazar, Yaro Imiye Franck
    关键词: Echocardiography, Object Detection, YOLO, Attention Modules
    日期: 2025-04-22
    上传时间: 2025-03-20 12:05:20 (UTC+8)
    摘要: Several attention modules—such as SENet, CBAM, and SimAM—have been successfully applied in image classification tasks and could be integrated into object detection frameworks like YOLOv5, YOLOv7, and YOLOv9. However, the optimal insertion point within these detection architectures—whether in the backbone, neck, or head—remains an open question. In this study, we systematically investigate the effects of incorporating attention modules at various network locations. Experiments conducted on a regurgitation dataset of echocardiography images demonstrate that strategically inserting attention modules significantly improves performance, as measured by the mAP50 metric. Notably, the CBAM module proves particularly effective for the task at hand.
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈