淡江大學機構典藏:Item 987654321/126955
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64191/96979 (66%)
Visitors : 8165341      Online Users : 7537
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126955


    Title: Dense gas scaling relations at kiloparsec scales across nearby galaxies with the ALMA ALMOND and IRAM 30 m EMPIRE surveys
    Authors: Pan, Hsi-an
    Keywords: ISM: molecules;galaxies: ISM;galaxies: star formation
    Date: 2025-01-14
    Issue Date: 2025-03-20 09:32:42 (UTC+8)
    Abstract: Dense, cold gas is the key ingredient for star formation. Over the last two decades, HCN(1 − 0) emission has been the most accessible dense gas tracer for studying external galaxies. We present new measurements that demonstrate the relationship between dense gas tracers, bulk molecular gas tracers, and star formation in the ALMA ALMOND survey, the largest sample of resolved (1–2 kpc resolution) HCN maps of galaxies in the local Universe (d < 25 Mpc). We measured HCN/CO, a line ratio sensitive to the physical density distribution, and the star formation rate to HCN ratio (SFR/HCN), a proxy for the dense gas star formation efficiency, as a function of molecular gas surface density, stellar mass surface density, and dynamical equilibrium pressure across 31 galaxies (a factor of > 3 more compared to the previously largest such study, EMPIRE). HCN/CO increases (slope of ≈0.5 and scatter of ≈0.2 dex) and SFR/HCN decreases (slope of ≈ − 0.6 and scatter of ≈0.4 dex) with increasing molecular gas surface density, stellar mass surface density, and pressure. Galaxy centres with high stellar mass surface densities show a factor of a few higher HCN/CO and lower SFR/HCN compared to the disc average, but the two environments follow the same average trend. Our results emphasise that molecular gas properties vary systematically with the galactic environment and demonstrate that the scatter in the Gao–Solomon relation (SFR/HCN) has a physical origin.
    Relation: Astronomy & Astrophysics 693, L13
    DOI: 10.1051/0004-6361/202453208
    Appears in Collections:[Graduate Institute & Department of Physics] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML11View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback