English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64185/96959 (66%)
造訪人次 : 11550949      線上人數 : 22227
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126943


    題名: Generative Adversarial Network Applied to Electromagnetic Imaging of Buried Objects
    作者: Chiu, Chien-Ching;Chien, Wei;Li, Ching-Lieh;Chen, Po-Hsiang;Yu, Kai-Xu;Lim, Eng-Hock
    關鍵詞: buried dielectric object;electromagnetic imaging;inverse scattering problems;generative adversarial network
    日期: 2024-07-24
    上傳時間: 2025-03-20 09:32:11 (UTC+8)
    出版者: MDPI
    摘要: Generative adversarial network (GAN) architecture is employed to tackle the inverse scattering problem of buried dielectric objects in half-space. Traditional iterative methods aimed at resolving the inverse scattering problem of buried dielectric objects have encountered a variety of difficulties, such as highly nonlinear phenomenon, high computational costs for half-space Green’s function, and missing measured scattered field information at the lower half of the object. The generator of GAN learns to generate more realistic images, while the discriminator of GAN improves its ability to identify fake images through a game-like process. The iterative process stops when the image generated by the generator is indistinguishable from the real image. In addition, we also analyze and compare the reconstruction outcomes obtained using both GAN and U-Net. Numerical outcomes show that GAN can efficiently reconstruct images with higher reliability than U-Net for buried objects with different dielectric permittivities and handwritten shapes. In summary, our proposed method has opened up a new avenue for imaging buried objects by adopting a deep learning network technique.
    關聯: Sensors and Materials 36(7), p.2925-2941
    DOI: 10.18494/SAM5018
    顯示於類別:[電機工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML13檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋