淡江大學機構典藏:Item 987654321/126941
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8333299      線上人數 : 8003
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126941


    題名: Machine learning-driven design of dual-band antennas using PGGAN and enhanced feature mapping
    作者: Tuen, Lung-fai;Li, Ching-lieh;Chi, Yu-jen;Chiu, Chien-ching;Chen, Po-hsiang
    關鍵詞: dual-band antenna;hough transform;Latin hypercube sampling;PGGAN;WGAN-GP
    日期: 2024-11-27
    上傳時間: 2025-03-20 09:32:03 (UTC+8)
    摘要: This paper presents a systematic antenna design methodology that integrates machine learning, leveraging the progressive growth technique of Progressive Growing of GANs (PGGAN) to generate images of various dual-band PIFA-like antenna structures. The process involves using data augmentation methods to generate 4180 antenna samples. In the latent space, the authors employ Latin Hypercube Sampling to maintain diversity and combine it with the Hough Transform to enhance the edge features of the antennas while providing labelling functionality. This labelling method strengthens the relationship between antenna frequency and wavelength characteristics. The paper clearly outlines the design process, starting from the simulation of two types of single-frequency PIFA-like antennas (2.45 and 5.2 GHz, respectively) to the completion of PGGAN's generation task, resulting in a novel dual-band Wi-Fi PIFA-like antenna structure. The measurement results of the dual-band antennas exhibit excellent consistency with the simulation results.
    關聯: IET Microwaves, Antennas & Propagation 18(12), p.1113-1138
    DOI: 10.1049/mia2.12534
    顯示於類別:[電機工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML20檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋