淡江大學機構典藏:Item 987654321/126941
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8254942      在线人数 : 7779
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126941


    题名: Machine learning-driven design of dual-band antennas using PGGAN and enhanced feature mapping
    作者: Tuen, Lung-fai;Li, Ching-lieh;Chi, Yu-jen;Chiu, Chien-ching;Chen, Po-hsiang
    关键词: dual-band antenna;hough transform;Latin hypercube sampling;PGGAN;WGAN-GP
    日期: 2024-11-27
    上传时间: 2025-03-20 09:32:03 (UTC+8)
    摘要: This paper presents a systematic antenna design methodology that integrates machine learning, leveraging the progressive growth technique of Progressive Growing of GANs (PGGAN) to generate images of various dual-band PIFA-like antenna structures. The process involves using data augmentation methods to generate 4180 antenna samples. In the latent space, the authors employ Latin Hypercube Sampling to maintain diversity and combine it with the Hough Transform to enhance the edge features of the antennas while providing labelling functionality. This labelling method strengthens the relationship between antenna frequency and wavelength characteristics. The paper clearly outlines the design process, starting from the simulation of two types of single-frequency PIFA-like antennas (2.45 and 5.2 GHz, respectively) to the completion of PGGAN's generation task, resulting in a novel dual-band Wi-Fi PIFA-like antenna structure. The measurement results of the dual-band antennas exhibit excellent consistency with the simulation results.
    關聯: IET Microwaves, Antennas & Propagation 18(12), p.1113-1138
    DOI: 10.1049/mia2.12534
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML16检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈