淡江大學機構典藏:Item 987654321/126937
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 10077217      在线人数 : 17329
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126937


    题名: Three-Stage Recursive Learning Technique for Face Mask Detection on Imbalanced Datasets
    作者: Tsai, Chi-yi;Shih, Wei-hsuan
    关键词: imbalanced data;recursive learning;face mask detection;object detection
    日期: 2024-10-04
    上传时间: 2025-03-20 09:31:48 (UTC+8)
    出版者: MDPI
    摘要: In response to the COVID-19 pandemic, governments worldwide have implemented mandatory face mask regulations in crowded public spaces, making the development of automatic face mask detection systems critical. To achieve robust face mask detection performance, a high-quality and comprehensive face mask dataset is required. However, due to the difficulty in obtaining face samples with masks in the real-world, public face mask datasets are often imbalanced, leading to the data imbalance problem in model training and negatively impacting detection performance. To address this problem, this paper proposes a novel recursive model-training technique designed to improve detection accuracy on imbalanced datasets. The proposed method recursively splits and merges the dataset based on the attribute characteristics of different classes, enabling more balanced and effective model training. Our approach demonstrates that the carefully designed splitting and merging of datasets can significantly enhance model-training performance. This method was evaluated using two imbalanced datasets. The experimental results show that the proposed recursive learning technique achieves a percentage increase (PI) of 84.5% in mean average precision (mAP@0.5) on the Kaggle dataset and of 186.3% on the Eden dataset compared to traditional supervised learning. Additionally, when combined with existing oversampling techniques, the PI on the Kaggle dataset further increases to 88.9%, highlighting the potential of the proposed method for improving detection accuracy in highly imbalanced datasets.
    關聯: Mathematics 12(19), 3104
    DOI: 10.3390/math12193104
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML29检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈