English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 9475163      Online Users : 9520
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126908


    Title: Incorporation of ascorbic acid-2-glucoside into ulvan microneedles to enhance its permeation for anti-aging and whitening treatment
    Authors: Don, Trong-ming
    Date: 2024-12-27
    Issue Date: 2025-03-20 09:30:20 (UTC+8)
    Publisher: Elsevier
    Abstract: For anti-aging and whitening treatment, ascorbic acid-2-glucoside (AA2G) was incorporated into a 4.0 % (w/v) ulvan solution at three concentrations (0.5 %, 1.0 %, and 2.0 % w/v) to fabricate ulvan-based microneedles (UMNs) using a spin-casting method, aimed at enhancing AA2G permeation. The in vitro skin insertion study demonstrated that incorporating AA2G into the UMNs improved their insertion capability, increasing from 86.3 % for neat UMNs to 98 % for AA2G-UMNs. Furthermore, in vitro drug permeation profiles revealed that dissolving UMNs significantly enhanced the cumulative permeation of AA2G, achieving 80–90 % within 3 h. In addition to showing good biocompatibility with HaCaT and NIH3T3 cells, AA2G-UMNs exhibited antioxidant activity and protected HaCaT cells from H2O2-induced oxidative stress. Their anti-aging activity was demonstrated by their ability to inhibit elastase and collagenase activity. Moreover, whitening efficacy was confirmed through the inhibition of melanin production and tyrosinase activity. Among the formulations, 2.0 % AA2G-UMNs achieved the greatest reduction in melanin content in B16F10 cells, with a 54.2 % reduction intracellularly and a 61.3 % reduction extracellularly. Tyrosinase activity inhibition by AA2G-UMNs ranged from 42.6 % to 53.4 %. These results suggest that AA2G-UMNs hold significant promise for applications in the pharmaceutical and cosmeceutical industries.
    Relation: International Journal of Biological Macromolecules 292, 139250
    DOI: 10.1016/j.ijbiomac.2024.139250
    Appears in Collections:[Graduate Institute & Department of Chemical and Materials Engineering] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML4View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback