淡江大學機構典藏

Menu Search
查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126905


    题名: Impact of Intermediate Species in Simulating Oblique Detonation with Pre-Vaporized N-Decane/air Mixtures Substituting for Kerosene/Air Mixtures
    作者: Wu, Yi-jhen;Niu, Yang-yao
    关键词: Oblique detonation;CFD;shock wave;reduced chemical kinetic models;hydrocarbon fuel
    日期: 2024-06-06
    上传时间: 2025-03-20 09:30:05 (UTC+8)
    出版者: Taylor & Francis
    摘要: A renewed two-step n-decane mechanism is presented to improve reliable and robust simulation results, substituting for kerosene. This mechanism demonstrates that effective control of ignition delay time and heat release, based on the Chapman – Jouguet condition, enables successful simulation of oblique detonation waves. Chain reactions influence the overall reaction heat and explosion temperature, especially in simplified mechanisms with few steps. Therefore, carbon monoxide (CO) generation is crucial for balancing the overall reaction heat and reducing species sensitivity to pressure, a factor previously not discussed in simplified models. The computational time for solving detailed chemical kinetics increases exponentially with species count, driving the pursuit for further reduction in kinetic mechanism size. The sensitive interaction between density and temperature during the fuel/air mixture explosion process affects initiation zone formation and cellular structure. Analyzing the distribution of CO can provide insights into structural details. The study considers applying the Rankine – Hugoniot curve to confirm detonation speeds, temperatures, and kinetic energy changes induced by chemical reactions.
    關聯: Combustion Science and Technology
    DOI: 10.1080/00102202.2024.2362312
    显示于类别:[航空太空工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML18检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章
    DSpace Software Copyright © 2002-2004  MIT &  HP  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈