English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10093135      線上人數 : 20157
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126791


    題名: Deep Learning for Sensor-based Rehabilitation Exercise Recognition and Evaluation
    作者: Zhu, Zheng-an
    關鍵詞: rehabilitation exercises;recognition;evaluation;deep learning;sensor data
    日期: 2019-02-20
    上傳時間: 2025-03-20 09:25:08 (UTC+8)
    出版者: MDPI
    摘要: In this paper, a multipath convolutional neural network (MP-CNN) is proposed for rehabilitation exercise recognition using sensor data. It consists of two novel components: a dynamic convolutional neural network (D-CNN) and a state transition probability CNN (S-CNN). In the D-CNN, Gaussian mixture models (GMMs) are exploited to capture the distribution of sensor data for the body movements of the physical rehabilitation exercises. Then, the input signals and the GMMs are screened into different segments. These form multiple paths in the CNN. The S-CNN uses a modified Lempel–Ziv–Welch (LZW) algorithm to extract the transition probabilities of hidden states as discriminate features of different movements. Then, the D-CNN and the S-CNN are combined to build the MP-CNN. To evaluate the rehabilitation exercise, a special evaluation matrix is proposed along with the deep learning classifier to learn the general feature representation for each class of rehabilitation exercise at different levels. Then, for any rehabilitation exercise, it can be classified by the deep learning model and compared to the learned best features. The distance to the best feature is used as the score for the evaluation. We demonstrate our method with our collected dataset and several activity recognition datasets. The classification results are superior when compared to those obtained using other deep learning models, and the evaluation scores are effective for practical applications.
    關聯: Sensors 19(4), 887
    DOI: 10.3390/s19040887
    顯示於類別:[人工智慧學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML27檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋