淡江大學機構典藏:Item 987654321/126778
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8274584      線上人數 : 7405
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126778


    題名: CNTNF framework focus on forecasting and verifying network threats and faults
    作者: Chen, Hsia-hsiang
    日期: 2025-01-11
    上傳時間: 2025-03-20 09:24:27 (UTC+8)
    出版者: Elsevier
    摘要: I propose two frameworks. One framework combines network threats and network faults (CNTNF). This framework incorporates our previous network threat detection and fault localization research. For previous works, I propose three models—the fast filtering and identification system using an ant agent system to effectively defend against denial of service (DoS), quality of service (QoS) attacks, and QoS fault cases, it is called the unified threat identification and fault localization by using ant colony optimization (ACO) (UTFACO), the ant colony system for distributed detection and identification of distributed denial of service (DDoS), namely the distributed detection and identification ant colony system (DDIACS) and the software fault localization (SFL)/network fault localization (NFL) cases are overcome by the spectrum-based SFL (SSFL) system architecture. Additionally, the CNTNF includes the SSFL method to diagnose network faults and multiple QoS fault cases. For this reason, I design a flexible framework, which can be expanded based on the new features when the threats or faults are found and outperformed. The second framework is for the comparison and analysis of the various countermeasures against threats and faults. I develop the attack and defense for forecast and verification modeling framework (ADFVMF). ADFVMF accelerates the development of CNTNF and assesses its contribution value. The experimental results demonstrate that the aggregate total average (ATAVG) of detection rate (DEC-R), ATAVG of accuracy rate (ACC-R), and ATAVG of duration time (DUR-T) are 84.26 %, 88.03 %, and 11.38 s, respectively. Consequently, CNTNF is a stability framework based on the boundary limitations and the optimization of parameters in terms of efficiency and effectiveness.
    關聯: Internet of Things 30, 101504
    DOI: 10.1016/j.iot.2025.101504
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML19檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋