This paper introduces a novel unsupervised domain adaptation (UDA) method, MeTa Discriminative Class-Wise MMD (MCWMMD), which combines meta-learning with a Class-Wise Maximum Mean Discrepancy (MMD) approach to enhance domain adaptation. Traditional MMD methods align overall distributions but struggle with classwise alignment, reducing feature distinguishability. MCWMMD incorporates a metamodule to dynamically learn a deep kernel for MMD, improving alignment accuracy and model adaptability. This meta-learning technique enhances the model’s ability to generalize across tasks by ensuring domain-invariant and class-discriminative feature representations. Despite the complexity of the method, including the need for meta-module training, it presents a significant advancement in UDA. Future work will explore scalability in diverse real-world scenarios and further optimize the meta-learning framework. MCWMMD offers a promising solution to the persistent challenge of domain adaptation, paving the way for more adaptable and generalizable deep learning models.