淡江大學機構典藏:Item 987654321/126744
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8406720      在线人数 : 8159
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126744


    题名: Forecasting S&P-100 stock index volatility: The role of volatility asymmetry and distributional assumption in GARCH models
    作者: Hung, Jui-cheng
    关键词: Volatility;GARCH;Asymmetry;Distribution;SPA test
    日期: 2009-12-09
    上传时间: 2025-03-20 09:22:32 (UTC+8)
    出版者: Elsevier
    摘要: This study investigates the daily volatility forecasting for the Standard & Poor’s 100 stock index series from 1997 to 2003 and identifies the essential source of performance improvements between distributional assumption and volatility specification using distribution-type (GARCH-N, GARCH-t, GARCH-HT and GARCH-SGT) and asymmetry-type (GJR-GARCH and EGARCH) volatility models through the superior predictive ability (SPA) test. Empirical results indicate that the GJR-GARCH model achieves the most accurate volatility forecasts, closely followed by the EGARCH model. Such evidence strongly demonstrates that modeling asymmetric components is more important than specifying error distribution for improving volatility forecasts of financial returns in the presence of fat-tails, leptokurtosis, skewness and leverage effects. Furthermore, if asymmetries are neglected, the GARCH model with normal distribution is preferable to those models with more sophisticated error distributions.
    關聯: Expert Systems with Applications 37(7), p.4928-4934
    DOI: 10.1016/j.eswa.2009.12.022
    显示于类别:[財務金融學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML3检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈