淡江大學機構典藏:Item 987654321/126653
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64185/96959 (66%)
造访人次 : 11964259      在线人数 : 22947
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126653


    题名: MeTa Learning-Based Optimization of Unsupervised Domain Adaptation Deep Networks
    作者: Hsiau-Wen Lin, Trang-Thi Ho, Ching-Ting Tu, Hwei Jen Lin, Chen-Hsiang Yu
    关键词: unsupervised domain adaptation;maximum mean discrepancy (MMD);discriminative class-wise MMD (DCWMMD);meta-learning;deep kernel;feature distributions;domain shift;transfer learning
    日期: Jan. 10,
    上传时间: 2025-01-15 12:05:16 (UTC+8)
    摘要: This paper introduces a novel unsupervised domain adaptation (UDA) method,
    MeTa Discriminative Class-Wise MMD (MCWMMD), which combines meta-learning
    with a Class-Wise Maximum Mean Discrepancy (MMD) approach to enhance domain adaptation.
    Traditional MMD methods align overall distributions but struggle with classwise
    alignment, reducing feature distinguishability. MCWMMD incorporates a metamodule
    to dynamically learn a deep kernel for MMD, improving alignment accuracy and
    model adaptability. This meta-learning technique enhances the model’s ability to generalize
    across tasks by ensuring domain-invariant and class-discriminative feature representations.
    Despite the complexity of the method, including the need for meta-module
    training, it presents a significant advancement in UDA. Future work will explore scalability
    in diverse real-world scenarios and further optimize the meta-learning framework.
    MCWMMD offers a promising solution to the persistent challenge of domain adaptation,
    paving the way for more adaptable and generalizable deep learning models.
    關聯: Mathematics, 13(2):226
    DOI: 10.3390/math13020226
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML57检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈