English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64185/96959 (66%)
造訪人次 : 11729199      線上人數 : 12498
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126653


    題名: MeTa Learning-Based Optimization of Unsupervised Domain Adaptation Deep Networks
    作者: Hsiau-Wen Lin, Trang-Thi Ho, Ching-Ting Tu, Hwei Jen Lin, Chen-Hsiang Yu
    關鍵詞: unsupervised domain adaptation;maximum mean discrepancy (MMD);discriminative class-wise MMD (DCWMMD);meta-learning;deep kernel;feature distributions;domain shift;transfer learning
    日期: Jan. 10,
    上傳時間: 2025-01-15 12:05:16 (UTC+8)
    摘要: This paper introduces a novel unsupervised domain adaptation (UDA) method,
    MeTa Discriminative Class-Wise MMD (MCWMMD), which combines meta-learning
    with a Class-Wise Maximum Mean Discrepancy (MMD) approach to enhance domain adaptation.
    Traditional MMD methods align overall distributions but struggle with classwise
    alignment, reducing feature distinguishability. MCWMMD incorporates a metamodule
    to dynamically learn a deep kernel for MMD, improving alignment accuracy and
    model adaptability. This meta-learning technique enhances the model’s ability to generalize
    across tasks by ensuring domain-invariant and class-discriminative feature representations.
    Despite the complexity of the method, including the need for meta-module
    training, it presents a significant advancement in UDA. Future work will explore scalability
    in diverse real-world scenarios and further optimize the meta-learning framework.
    MCWMMD offers a promising solution to the persistent challenge of domain adaptation,
    paving the way for more adaptable and generalizable deep learning models.
    關聯: Mathematics, 13(2):226
    DOI: 10.3390/math13020226
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML57檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋