淡江大學機構典藏:Item 987654321/126616
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8271008      在线人数 : 7439
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126616


    题名: Multi-objective mathematical model for optimal wind turbine placement in wind farm under uncertainty
    作者: Li, Guanting;Chen, Tzu-Chia
    关键词: Wind turbine;Monte Carlo Simulation;Multi-objective optimization;Wake effect;Meta-heuristic aglrotithms
    日期: 2024-09-28
    上传时间: 2024-12-27 12:05:21 (UTC+8)
    摘要: The main objective of this research is to introduce three energy risk management models grounded in optimization techniques for the strategic placement of wind turbines, considering wake effects and uncertainties in wind speed and direction. For this purpose, wind speed and direction data are gathered, and Monte Carlo simulation is employed to model the uncertainties. Subsequently, the risk management models undergo optimization using Non-Dominated Sorting Genetic Algorithm II (NSGA-II), Pareto envelope-based selection algorithm II (PESA-II), and Multi-Objective Particle Swarm Optimization (MOPSO) algorithms. Findings reveal that the wind farm's maximum power output reaches approximately 5.8 megawatts across all three algorithms and optimal turbine placements. A risk assessment was conducted using a tenth percentile criterion, revealing a significant production risk within the study area, with production falling below 1.8 megawatts in 90 % of cases. Regarding the performance evaluation of the algorithms across all three models, superior performance in terms of solution proximity to the ideal solution is exhibited by PESA-II, while enhanced diversity and solution spread compared to the other algorithms are demonstrated by NSGA-II.
    關聯: Journal of Engineering Research, Available online 28 September 2024
    DOI: 10.1016/j.jer.2024.09.014
    显示于类别:[人工智慧學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML23检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈