淡江大學機構典藏:Item 987654321/126602
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9414390      線上人數 : 9348
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126602


    題名: Modeling curves and derivatives as predictors for traffic breakdown probabilities
    作者: Li, Pai-ling
    關鍵詞: derivatives;functional data;Karhunen–Loève representation;regression analysis;traffic congestion
    日期: 2024-09
    上傳時間: 2024-12-23 12:05:32 (UTC+8)
    摘要: Motivated by an interest in predicting the status of road traffic congestion within a short period, this paper presents a generalized functional linear regression model for predicting traffic breakdown probabilities. In this model, traffic congestion status is the response variable, and we utilize the observed traffic speed trajectories and their first two derivatives as functional predictors, representing different features of a random function. While the derivatives of a trajectory may contain useful information, they cannot be observed directly and so must be estimated. To address this challenge, we apply the Karhunen–Loève representation to individual functional predictors, including the trajectory and its derivatives. The regression model is reparameterized to represent both the integrated regression effect and the predictor-specific effects. The importance of these effects is indicated by the corresponding weight parameters. We also provide the consistency properties of the estimators relating to the derivative functional principal components and the regression parameter functions. In our simulation study, we find that the modeling approach is useful in its application to freeway traffic data; in particular, the use of speed trajectory derivatives as predictors for traffic status successfully enhances prediction accuracy.
    關聯: Annals of Applied Statisitcs 18(3), p.2230-2253
    DOI: 10.1214/24-AOAS1878
    顯示於類別:[統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML37檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋