淡江大學機構典藏:Item 987654321/126458
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8332296      在线人数 : 8100
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126458


    题名: Predicting pump inspection cycles for oil wells based on stacking ensemble models
    作者: Tsai, Tzong-ru
    关键词: pump inspection cycle;data mining;machine learning;ensemble model;reliability analysis
    日期: 2024-07-17
    上传时间: 2024-11-11 12:05:29 (UTC+8)
    摘要: Beam pumping is currently the broadly used method for oil extraction worldwide. A pumpjack shutdown can be incurred by failures from the load, corrosion, work intensity, and downhole working environment. In this study, the duration of uninterrupted pumpjack operation is defined as the pump inspection cycle. Accurate prediction of the pump inspection cycle can extend the lifespan, reduce unexpected pump accidents, and significantly enhance the production efficiency of the pumpjack. To enhance the prediction performance, this study proposes an improved two-layer stacking ensemble model, which combines the power of the random forests, light gradient boosting machine, support vector regression, and Adaptive Boosting approaches, for predicting the pump inspection cycle. A big pump-related oilfield data set is used to demonstrate the proposed two-layer stacking ensemble model can significantly enhance the prediction quality of the pump inspection cycle.
    關聯: Mathematics 12(14), 2231
    DOI: 10.3390/math12142231
    显示于类别:[統計學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML37检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈