淡江大學機構典藏:Item 987654321/126361
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64185/96959 (66%)
造訪人次 : 11909458      線上人數 : 12237
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126361


    題名: An AI-based Approach for Mystery Shopping Audit in Customer Service
    作者: Chuang, Christopher;Zhang, Qiaoyun;Lin, Yi-Ti;Ho, Chia-Ling;Chang, Chih-Yung
    日期: 2024-05-22
    上傳時間: 2024-10-07 12:06:07 (UTC+8)
    出版者: Association for Computing Machinery,New York,NY,United States
    摘要: In the era of intense business competition, the emergence of mystery shoppers provides companies with objective insights, enabling them to innovate and enhance their offerings to meet evolving customer needs and maintain a competitive edge. This paper introduces AMSA (AI-based approach for Mystery Shopping Audit), a service behavior identification mechanism for analyzing mystery shopping audit videos. AMSA identifies behaviors like five-finger guidance, hand offering, and maintaining good posture through two phases: coarse-grain and fine-grain identification. In the coarse-grain phase, an automated filtering and classification algorithm is proposed, utilizing YOLO for target detection. Subsequently, fine-grain identification employs 3DCNN for action classification, trained on enhanced videos of target actions. The Simulation results show that the proposed AMSA significantly improves accuracy of identification.
    DOI: 10.1145/3658549.3658555
    顯示於類別:[資訊工程學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML74檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋