淡江大學機構典藏:Item 987654321/126325
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64185/96959 (66%)
造訪人次 : 11748896      線上人數 : 19281
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126325


    題名: TEPM: Traveler Enrollment Prediction Mechanism using BERT-based Feature Clustering and LSTM Models
    作者: Tsai, Chung-You;Su, Ming-Yang;Chuang, Christopher;Chang, Chih-Yung;Roy, Diptendu Sinha
    關鍵詞: tour group prediction;feature clustering;natural language processing;BERT model;LSTM enrolment prediction
    日期: 2024-05-29
    上傳時間: 2024-10-02 12:05:37 (UTC+8)
    摘要: The prediction of whether a tour group will form or not has a significant impact on travellers' future itinerary planning and travel agencies' control over hotel and flight bookings. Traditional methods rely solely on historical data, therefore lacks accuracy due to diverse tour attributes. The proposed mechanism, called TEPM, divides the enrolment prediction into three stages, including clustering, classification and prediction. Firstly, it clusters the tours to several groups according to the enrolment data. Secondly, natural language processing techniques are used to convert tour advertisements into feature documents. The BERT is employed to learn the relationship between advertisement feature documents and clusters. This enables the prediction of the group to which a given tour advertisement belongs. Finally, in the prediction stage, this paper employs dedicated LSTM models for each cluster to predict the number of enrolees. Experiments show that this approach performs well in terms of precision, recall, and F1 score.
    關聯: International Journal of Ad Hoc and Ubiquitous Computing , vol. 46, no. 1, pp. 14-26
    DOI: 10.1504/IJAHUC.2024.138748
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML75檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋