淡江大學機構典藏:Item 987654321/126315
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8256446      在线人数 : 7992
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126315


    题名: SW-YOLOX: A YOLOX-based real-time pedestrian detector with shift window-mixed attention mechanism
    作者: Tsai, Chi-Yi;Wang, Run-Yu;Chiu, Yu-Chen
    日期: 2024-08-13
    上传时间: 2024-09-23 12:05:38 (UTC+8)
    摘要: Pedestrian detection is a critical research area in computer vision with practical applications. This paper addresses this key topic by providing a novel lightweight model named Shift Window-YOLOX (SW-YOLOX). The purpose of SW-YOLOX is to significantly enhance the robustness and real-time performance of pedestrian detection under practical application requirements. The proposed method incorporates a novel Shift Window-Mixed Attention Mechanism (SW-MAM), which combines spatial and channel attention for effective feature extraction. In addition, we introduce a novel up-sampling layer, PatchExpandingv2, to enhance spatial feature representation while maintaining computational efficiency. Furthermore, we propose a novel Shift Window-Path Aggregation Feature Pyramid Network (SW-PAFPN) to integrate with the YOLOX detector, further enhancing feature extraction and the robustness of pedestrian detection. Experimental results validated on challenging datasets such as CrowdHuman, MOT17Det, and MOT20Det demonstrate the competitive performance of the proposed SW-YOLOX compared to state-of-the-art methods and its pedestrian detection performance in crowded and complex scenes.
    關聯: Neurocomputing, Vol. 606, No. 128357, p. 1-16
    DOI: https://doi.org/10.1016/j.neucom.2024.128357
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML41检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈