淡江大學機構典藏:Item 987654321/126233
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8184739      在线人数 : 7194
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126233


    题名: Enhancing Protein Sequence Classification with a Fuzzy Neural Network: A Study in Anticancer Peptide Identification
    作者: Le, Khanh;Nguyen, Nguyen Quoc and;Van-Nui and Nguyen, Thi-Tuyen and Tran;Ho, Thi-Xuan and;Trang-Thi
    关键词: Fuzzy Neural Networks , Protein Sequence Classification , Anticancer Peptides , Bioinformatics , Genetic Algorithms , Feature Selection
    日期: 2024-08-10
    上传时间: 2024-09-20 12:08:43 (UTC+8)
    出版者: IEEE
    摘要: In bioinformatics, classifying protein sequences into anticancer peptides (ACPs) and non-ACPs is crucial yet challenging due to the inherent uncertainties of biological data. This study introduces a novel fuzzy neural network (FNN) model that integrates fuzzy logic within neural network architectures, enhancing the handling of ambiguity and improving classification accuracy. Our model, tested against several conventional machine learning models and recent studies, demonstrated superior specificity (83.28%) and overall accuracy (79.14%), marking a significant advancement in the identification of therapeutically relevant peptides. The integration of fuzzy logic not only optimized the performance but also increased the interpretability of the results, making it a valuable tool for complex bioinformatic analyses. These findings underscore the potential of fuzzy systems to refine predictive capabilities in computational biology, aligning perfectly with the themes of enhancing fuzzy theory applications in practical and impactful ways.
    DOI: 10.1109/iFUZZY63051.2024.10662887
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML71检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈