English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9563022      線上人數 : 17743
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126221


    題名: Preparation and characterization of chitosan/starch nanocomposite loaded ampicillin to enhance anti-bacterial activity against Escherichia coli
    作者: Nguyen, Vinh Nghi;Wang, San-Lang;Nguyen, Thi Huyen;Nguyen, Van Bon;Doan, Manh Dung;Nguyen, Anh Dzung
    關鍵詞: chitosan;starch;nanocomposites;ampicillin;E. coli;drug delivery
    日期: 2024-09-19
    上傳時間: 2024-09-20 12:07:40 (UTC+8)
    摘要: Chitosan/starch nanocomposites loaded with ampicillin were prepared using the spray-drying method by mixing various ratios of chitosan and starch. The morphology of chitosan/starch nanoparticles was studied using a scanning electron microscope (SEM), and the zeta potential value and size distribution were determined by a Nanoparticle Analyzer. The results show that the chitosan/starch nanocomposites have a spherical shape, smooth surface, and stable structure. Nanoparticle size distribution ranged from 100 to 600 nm, and the average particle size ranged from 300 to 400 nm, depending on the ratio between chitosan and starch. The higher the ratio of starch in the copolymer, the smaller the particle size. Zeta potential values of the nanocomposite were very high, ranging from +54.4 mV to +80.3 mV, and decreased from 63.2 down to +37.3 when loading with ampicillin. The chitosan/starch nanocomposites were also characterized by FT-IR to determine the content of polymers and ampicillin in the nanocomposites. The release kinetics of ampicillin from the nanocomposites were determined in vitro using an HPLC profile for 24 h. The loading efficiency (LE) of ampicillin into chitosan/starch nanoparticles ranged from 75.3 to 77.3%. Ampicillin-loaded chitosan/starch nanocomposites were investigated for their antibacterial activity against antibiotic-resistant Escherichia coli in vitro. The results demonstrate that the antibacterial effectiveness of nanochitosan/starch loading with ampicillin against E.coli was 95.41%, higher than the 91.40% effectiveness of ampicillin at the same concentration of 5.0 µg/mL after 24 h of treatment. These results suggest that chitosan/starch nanocomposites are potential nanomaterials for antibiotic drug delivery in the pharmaceutical field.
    關聯: Polymers, 16(18)
    DOI: 10.3390/polym16182647
    顯示於類別:[化學學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML61檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋