淡江大學機構典藏:Item 987654321/126218
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8254940      在线人数 : 7777
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126218


    题名: GNN-RM: A trajectory completion algorithm based on graph neural networks and regeneration modules
    作者: Hui, Lin
    关键词: Intelligent connected vehicles;Trajectory completion, Graph neural networks;Multi-head attention mechanism
    日期: 2024-07-14
    上传时间: 2024-09-20 12:07:22 (UTC+8)
    摘要: Data about vehicle trajectories assumes a crucial role in applications such as intelligent connected vehicles. However, missing values resulting from sensors and other factors frequently affect real trajectory data. Currently, it is challenging to utilize trajectory completion methods to generate accurate real-time results at an affordable computing cost. This paper proposes GNN-RM, a trajectory completion algorithm based on graph neural networks and regeneration modules, encompassing feature extraction, subgraph construction, spatial interaction graph, and trajectory regeneration modules. The feature extraction algorithm extracts influential data as feature vectors based on certain conditions and organizes these feature vectors into different subgraphs according to categories. The spatial interaction graph constructed through graph neural networks extracts spatial interaction features between vehicles and the environment, while the regeneration modules constructed by multi-head attention mechanisms extract temporal features of vehicles, thereby completing the missing trajectories. The experimental results demonstrate that GNN-RM can achieve higher trajectory completion accuracy with fewer input parameters than multiple baseline models.
    關聯: International Journal of Cognitive Computing in Engineering 5, p.297-306
    DOI: 10.1016/j.ijcce.2024.07.001
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML121检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈