淡江大學機構典藏

Menu Search
查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/126212


    題名: On k-shifted antimagic spider forests
    作者: Fei-Huang Chang, Wei-Tian Li, Daphne Der-Fen Liu, Zhishi Pan
    關鍵詞: Antimagic labeling;k-shifted antimagic labeling;Spider forest
    日期: 2024-08-24
    上傳時間: 2024-09-20 12:06:44 (UTC+8)
    摘要: Let G(V,E) be a simple graph with m edges. For a given integer k, a k-shifted antimagic labeling is a bijection f:E(G)→{k+1,k+2,…,k+m} such that all vertices have different vertex-sums, where the vertex-sum of a vertex v is the total of the labels assigned to the edges incident to v. A graph G is {\it k-shifted antimagic} if it admits a k-shifted antimagic labeling. For the special case when k=0, a 0-shifted antimagic labeling is known as {\it antimagic labeling}; and G is {\it antimagic} if it admits an antimagic labeling. A spider is a tree with exactly one vertex of degree greater than two. A spider forest is a graph where each component is a spider. In this article, we prove that certain spider forests are k-shifted antimagic for all k≥0. In addition, we show that for a spider forest G with m edges, there exists a positive integer k0<m such that G is k-shifted antimagic for all k≥k0 and k≤−(m+k0+1).
    關聯: Discrete Applied Mathematics 358, p. 468-476
    DOI: 10.1016/j.dam.2024.07.036
    顯示於類別:[應用數學與數據科學學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML78檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章
    DSpace Software Copyright © 2002-2004  MIT &  HP  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋