淡江大學機構典藏:Item 987654321/125884
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64185/96959 (66%)
造访人次 : 11686901      在线人数 : 213
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125884


    题名: Application of Self-Attention Generative Adversarial Network for Electromagnetic Imaging in Half-Space
    作者: Chiu, Chien-Ching;Lee, Yang-Han;Chen, Po-Hsiang;Shih, Ying-Chen;Hao, Jiang
    关键词: inverse scattering problem;self-attention;generative adversarial network;real-time imaging;back-propagation scheme
    日期: 2024-04-05
    上传时间: 2024-08-07 12:06:58 (UTC+8)
    出版者: MDPI
    摘要: In this paper, we introduce a novel artificial intelligence technique with an attention mechanism for half-space electromagnetic imaging. A dielectric object in half-space is illuminated by TM (transverse magnetic) waves. Since measurements can only be made in the upper space, the measurement angle will be limited. As a result, we apply a back-propagation scheme (BPS) to generate an initial guessed image from the measured scattered fields for scatterer buried in the lower half-space. This process can effectively reduce the high nonlinearity of the inverse scattering problem. We further input the guessed images into the generative adversarial network (GAN) and the self-attention generative adversarial network (SAGAN), respectively, to compare the reconstruction performance. Numerical results prove that both SAGAN and GAN can reconstruct dielectric objects and the MNIST dataset under same measurement conditions. Our analysis also reveals that SAGAN is able to reconstruct electromagnetic images more accurately and efficiently than GAN.
    關聯: Sensors 24(7), 2322
    DOI: 10.3390/s24072322
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML51检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈