淡江大學機構典藏:Item 987654321/125836
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64185/96959 (66%)
Visitors : 11657329      Online Users : 14093
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125836


    Title: GBA1 as a risk gene for osteoporosis in the specific populations and its role in the development of Gaucher disease
    Authors: Hsieh, Ai-ru
    Keywords: Gaucher disease;GBA1;Osteoclastogenesis;Inflammasome;Endoplasmic reticulum stress;Osteoporosis
    Date: 2024-04-04
    Issue Date: 2024-08-02 12:05:41 (UTC+8)
    Abstract: Background
    Osteoporosis and its primary complication, fragility fractures, contribute to substantial global morbidity and mortality. Gaucher disease (GD) is caused by glucocerebrosidase (GBA1) deficiency, leading to skeletal complications. This study aimed to investigate the impact of the GBA1 gene on osteoporosis progression in GD patients and the specific populations.

    Methods
    We selected 8115 patients with osteoporosis (T-score ≤ − 2.5) and 55,942 healthy individuals (T-score > − 1) from a clinical database (N = 95,223). Monocytes from GD patients were evaluated in relation to endoplasmic reticulum (ER) stress, inflammasome activation, and osteoclastogenesis. An in vitro model of GD patient’s cells treated with adeno-associated virus 9 (AAV9)-GBA1 to assess GBA1 enzyme activity, chitotriosidase activity, ER stress, and osteoclast differentiation. Longitudinal dual-energy X-ray absorptiometry (DXA) data tracking bone density in patients with Gaucher disease (GD) undergoing enzyme replacement therapy (ERT) over an extended period.

    Results
    The GBA1 gene variant rs11264345 was significantly associated [P < 0.002, Odds Ratio (OR) = 1.06] with an increased risk of bone disease. Upregulation of Calnexin, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) and Apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) was positively associated with osteoclastogenesis in patients with GD. In vitro AAV9-GBA1 treatment of GD patient cells led to enhanced GBA1 enzyme activity, reduced chitotriosidase activity, diminished ER stress, and decreased osteoclast differentiation. Long-term bone density data suggests that initiating ERT earlier in GD leads to greater improvements in bone density.

    Conclusions
    Elevated ER stress and inflammasome activation are indicative of osteoporosis development, suggesting the need for clinical monitoring of patients with GD. Furthermore, disease-associated variant in the GBA1 gene may constitute a risk factor predisposing specific populations to osteoporosis.
    Relation: Orphanet Journal of Rare Diseases 19, 144
    DOI: 10.1186/s13023-024-03132-x
    Appears in Collections:[Graduate Institute & Department of Statistics] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML67View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback