淡江大學機構典藏:Item 987654321/125835
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9998886      在线人数 : 18043
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125835


    题名: ECMWF Ensemble Forecasts of Six Tropical Cyclones That Formed during a Long-Lasting Rossby Wave Breaking Event in the Western North Pacific
    作者: Tsai, Hsiao-chung
    关键词: tropical cyclone track forecasts;ensemble model predictions;Rossby wave breaking events
    日期: 2024-05-17
    上传时间: 2024-08-02 12:05:34 (UTC+8)
    摘要: The ECMWF‘s ensemble (ECEPS) predictions are documented for the lifecycles of six tropical cyclones (TCs) that formed during a long-lasting Rossby wave breaking event in the western North Pacific. All six TC tracks started between 20° N and 25° N, and between 136° E and 160° E. All five typhoons recurved north of 30° N, and the three typhoons that did not make landfall had long tracks to 50° N and beyond. The ECEPS weighted mean vector motion track forecasts from pre-formation onward are quite accurate, with track forecast spreads that are primarily related to initial position uncertainties. The ECEPS intensity forecasts have been validated relative to the Joint Typhoon Warning Center (JTWC) Working Best Track (WBT) intensities (when available). The key results for Tokage (11 W) were the ECEPS forecasts of the intensification to a peak intensity of 100 kt, and then a rapid decay as a cold-core cyclone. For Hinnamnor (12 W), the key result was the ECEPS intensity forecasts during the post-extratropical transition period when Hinnamnor was rapidly translating poleward through the Japan Sea. For Muifa (14 W), the key advantage of the ECEPS was that intensity guidance was provided for longer periods than the JTWC 5-day forecast. The most intriguing aspect of the ECEPS forecasts for post-Merbok (15 W) was its prediction of a transition to an intense, warm-core vortex after Merbok had moved beyond 50° N and was headed toward the Aleutian Islands. The most disappointing result was that the ECEPS over-predicted the slow intensification rate of Nanmadol (16 W) until the time-to-typhoon (T2TY), but then failed to predict the large rapid intensification (RI) following the T2TY. The tentative conclusion is that the ECEPS model‘s physics are not capable of predicting the inner-core spin-up rates when a small inner-core vortex is undergoing large RI.
    關聯: Atmosphere 15(5), 610
    DOI: 10.3390/atmos15050610
    显示于类别:[水資源及環境工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML53检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈