淡江大學機構典藏:Item 987654321/125818
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9910804      線上人數 : 20036
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125818


    題名: Optimized Support Vector Machine for Early and Accurate Heart Disease Detection
    作者: Chen, Tzu-chia
    日期: 2024-06-13
    上傳時間: 2024-07-31 12:14:55 (UTC+8)
    出版者: CRC Press, London
    摘要: Many academics use data mining to predict diseases. Some approaches can predict one sickness, while others can predict several. Sickness prediction may be improved. This article provides an overview of the numerous data categorization methods available today. Algorithms represent most commonly. Classifying data involves a lot of computation. To create a disease-fighting plan that works, enormous amounts of data must be analysed. Early diagnosis, severity assessment, and prognosis are frequent. Doing so may postpone disease development, improve quality of life, and lower medical costs. This approach uses machine learning. This article classifies and predicts cardiovascular disease data using machine learning. SVM, ANN, and RF classify heart disease data. Accuracy-wise, SVM is better for heart disease classification and detection.
    關聯: Advancements in Science and Technology for Healthcare, Agriculture, and Environmental Sustainability
    1st edition
    顯示於類別:[人工智慧學系] 專書之單篇

    文件中的檔案:

    沒有與此文件相關的檔案.

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋