English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9386140      在线人数 : 465
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125818


    题名: Optimized Support Vector Machine for Early and Accurate Heart Disease Detection
    作者: Chen, Tzu-chia
    日期: 2024-06-13
    上传时间: 2024-07-31 12:14:55 (UTC+8)
    出版者: CRC Press, London
    摘要: Many academics use data mining to predict diseases. Some approaches can predict one sickness, while others can predict several. Sickness prediction may be improved. This article provides an overview of the numerous data categorization methods available today. Algorithms represent most commonly. Classifying data involves a lot of computation. To create a disease-fighting plan that works, enormous amounts of data must be analysed. Early diagnosis, severity assessment, and prognosis are frequent. Doing so may postpone disease development, improve quality of life, and lower medical costs. This approach uses machine learning. This article classifies and predicts cardiovascular disease data using machine learning. SVM, ANN, and RF classify heart disease data. Accuracy-wise, SVM is better for heart disease classification and detection.
    關聯: Advancements in Science and Technology for Healthcare, Agriculture, and Environmental Sustainability
    1st edition
    显示于类别:[人工智慧學系] 專書之單篇

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈