淡江大學機構典藏:Item 987654321/125745
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64198/96992 (66%)
造访人次 : 7929809      在线人数 : 2531
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125745


    题名: Low-coordinated Co-N3 sites induce peroxymonosulfate activation for norfloxacin degradation via high-valent cobalt-oxo species and electron transfer
    作者: C. Wang, X. Wang, H. Wang, L. Zhang, Y. Wang, C. L. Dong, Y. C. Huang, P. Guo, R. Cai, S. J. Haigh, X. Yang, Y. Sun, and D. Yang
    日期: 2023-08-05
    上传时间: 2024-07-31 12:11:33 (UTC+8)
    出版者: Elsevier
    摘要: The identification of reactive species in peroxymonosulfate (PMS) activation triggered by carbon-based single atom catalysts is the key to reveal the pollutant degradation mechanism. Herein, carbon-based single atom catalyst with low-coordinated Co-N3 sites (CoSA-N3-C) was synthesized to active PMS for norfloxacin (NOR) degradation. The CoSA-N3-C/PMS system exhibited consistent high performance for oxidizing NOR over a wide pH range (3.0–11.0). The system also achieved complete NOR degradation in different water matrixes, high cycle stability and excellent degradation performance for other pollutants. Theoretical calculations confirmed that the catalytic activity was derived from the favorable electron density of low-coordinated Co-N3 configuration, which was more conductive to PMS activation than other configurations. Electron paramagnetic resonance spectra, in-situ Raman analysis, solvent exchange (H2O to D2O), salt bridge and quenching experiments concluded that high-valent cobalt(IV)-oxo species (56.75%) and electron transfer (41.22%) contributed dominantly to NOR degradation. Moreover, 1O2 was generated in the activation process while not involved in pollutant degradation. This research demonstrates the specific contributions of nonradicals in PMS activation over Co-N3 sites for pollutant degradation. It also offers updated perceptions for rational design of carbon-based single atom catalysts with appropriate coordination structure.
    關聯: Journal of Hazardous Materials 455, 131622
    DOI: 10.1016/j.jhazmat.2023.131622
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML55检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈