淡江大學機構典藏:Item 987654321/125737
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64191/96979 (66%)
Visitors : 8089008      Online Users : 11831
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125737


    Title: Altering the spin state of Fe-N-C through ligand field modulation of single-atom sites boosts the oxygen reduction reaction
    Authors: Xue, Dongping;Yuan, Pengfei;Jiang, Su;Wei, Yifan;Zhou, Ying;Dong, Chung-Li;Yan, Wenfu;Mu, Shichun;Zhang, Jia-Nan
    Date: 2023-01
    Issue Date: 2024-07-31 12:11:10 (UTC+8)
    Publisher: Elsevier
    Abstract: Atomically dispersed Fe-N-C catalysts are the most promising candidates alternatively to Pt-based catalysts for oxygen reduction reaction (ORR). However, the ORR activity of Fe-Nx electrocatalysts in acid are still far from satisfactory; thus far, although some discussions demonstrate the important role of ligand fields of single atom metal-N-C sites on improving catalytic properties, the behind mechanism is still ambiguous. Herein, based on the ligand field theory, the electron spin-state modulation of Fe active centers in SA Fe-N-C achieved from a low-spin state (LS) for FeN5 (Fe-N5-LS) to a high-spin state (HS) for FeN4 (Fe-N4-HS) and FeN3 (Fe-N3-HS) was realized by converting defect-rich pyrrolic N-coordinated FeNx sites, which tune the electron readily penetrating the antibonding π-orbital of oxygen. The Fe-N4-HS exhibits a 3d-electronic structure of t2g3eg2 and significantly accelerate the ORR reaction kinetics. Taking advantage of activity-boosting high spin state (S5/2) of Fe (III), the designed Fe-N4-HS (with two longitudinal parallel coordinated pyrr-N and pyri-N, respectively) catalyst displays excellent ORR activity, which is comparable to commercial Pt/C catalyst. In addition, Fe-N4-HS presents higher proton exchange membrane fuel cell (PEMFC) and Zn-air battery performances than most non-precious-metal electrocatalysts. Our findings provide fundamental and technological insights into the correlation between the electronic spin states/geometric structure and high-efficiency SA Fe-N-C catalysts for ORR process.
    Relation: Nano Energy 105, 108020
    DOI: 10.1016/j.nanoen.2022.108020
    Appears in Collections:[Graduate Institute & Department of Electrical Engineering] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML68View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback