English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64191/96979 (66%)
Visitors : 8259782      Online Users : 7208
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125733


    Title: Fabrications of the Flexible Non-Enzymatic Glucose Sensors Using Au-CuO-rGO and Au-CuO-rGO-MWCNTs Nanocomposites as Carriers
    Authors: Liao, Shu-Han;Shiau, Kai-Yi;Wang, Fang-Hsing;Yang, Cheng-Fu
    Keywords: diabetes patient;flexible;non-enzymatic glucose sensor;graphene
    Date: 2023-09
    Issue Date: 2024-07-31 12:10:57 (UTC+8)
    Publisher: MDPI
    Abstract: A flexible, non-enzymatic glucose sensor was developed and tested on a polyethylene terephthalate (PET) substrate. The sensor’s design involved printing Ag (silver) as the electrode and utilizing mixtures of either gold–copper oxide-modified reduced graphene oxide (Au-CuO-rGO) or gold–copper oxide-modified reduced graphene oxide-multi-walled carbon nanotubes (Au-CuO-rGO-MWCNTs) as the carrier materials. A one-pot synthesis method was employed to create a nanocomposite material, consisting of Au-CuO-rGO mixtures, which was then printed onto pre-prepared flexible electrodes. The impact of different weight ratios of MWCNTs (0~75 wt%) as a substitute for rGO was also investigated on the sensing characteristics of Au-CuO-rGO-MWCNTs glucose sensors. The fabricated electrodes underwent various material analyses, and their sensing properties for glucose in a glucose solution were measured using linear sweep voltammetry (LSV). The LSV measurement results showed that increasing the proportion of MWCNTs improved the sensor’s sensitivity for detecting low concentrations of glucose. However, it also led to a significant decrease in the upper detection limit for high-glucose concentrations. Remarkably, the research findings revealed that the electrode containing 60 wt% MWCNTs demonstrated excellent sensitivity and stability in detecting low concentrations of glucose. At the lowest concentration of 0.1 μM glucose, the nanocomposites with 75 wt% MWCNTs showed the highest oxidation peak current, approximately 5.9 μA. On the other hand, the electrode without addition of MWCNTs displayed the highest detection limit (approximately 1 mM) and an oxidation peak current of about 8.1 μA at 1 mM of glucose concentration.
    Relation: Sensors 23(19), 8029
    DOI: 10.3390/s23198029
    Appears in Collections:[電機工程學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML36View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback