資料載入中.....
|
請使用永久網址來引用或連結此文件:
https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125730
|
題名: | Localized geometry determined selectivity of iodide-derived copper for electrochemical CO2 reduction |
作者: | Yuchuan Shi, Yiqing Wang, Chung-Li Dong, Ta Thi Thuy Nga, Daixing Wei, Jialin Wang, Xiaoli Zhao, Miao Wang, Kaini Zhang, Mingtao Li, Fan Dong, Shaohua Shen |
日期: | 2023-01-29 |
上傳時間: | 2024-07-31 12:10:49 (UTC+8) |
出版者: | Wiley-VCH |
摘要: | Two iodide-derived copper (ID-Cu) electrocatalysts (E-ID-Cu and W-ID-Cu) are prepared by electrochemical/wet chemical iodination of Cu foil and subsequent in situ electrochemical reduction reaction. In comparison to electropolished Cu (EP-Cu), both E-ID-Cu and W-ID-Cu can produce multicarbon (C2+) products with much-improved selectivity, with Faradic efficiency (FE) reaching 64.39% for E-ID-Cu and 71.16% for W-ID-Cu at −1.1 V versus reversible hydrogen electrodes (RHE), which can be attributed to their localized geometry features with high defect density and high surface roughness. Given the well-determined FEs towards C2+ products, the partial current densities for C2+ production can be estimated to be 251.8 mA cm−2 for E-ID-Cu and 290.0 mA cm−2 for W-ID-Cu at −1.2 V versus RHE in a flow cell. In situ characterizations and theoretical calculations reveal that the high-density defects and high surface roughness can promote *CO adsorption by raising the d band center and then facilitate C–C coupling, contributing to the high selectivity of C2+ products for ID-Cu. Interestingly, the high surface roughness can increase the residence time of *C–H intermediates and decrease the formation energy of the *OCCO and*CH3CH2O intermediates, thus favoring C2+ production, with a unique C2H6 product observed over W-ID-Cu with FE of 10.14% at −0.7 V versus RHE. |
關聯: | Advanced Energy Materials 13(11), 2203896 |
DOI: | 10.1002/aenm.202203896 |
顯示於類別: | [電機工程學系暨研究所] 期刊論文
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
index.html | | 0Kb | HTML | 45 | 檢視/開啟 |
|
在機構典藏中所有的資料項目都受到原著作權保護.
|