淡江大學機構典藏:Item 987654321/125729
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64191/96979 (66%)
Visitors : 8059338      Online Users : 11383
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125729


    Title: Synergy of ultrathin CoOx overlayer and nickel single atoms on hematite nanorods for efficient photoelectrochemical water splitting
    Authors: Lianlian Mao, Yu-Cheng Huang, Hao Deng, Fanqi Meng, Yanming Fu, Yiqing Wang, Mingtao Li, Qinghua Zhang, Chung-Li Dong, Lin Gu, Shaohua Shen
    Date: 2023-02-15
    Issue Date: 2024-07-31 12:10:47 (UTC+8)
    Publisher: Wiley-VCH
    Abstract: To solve surface carrier recombination and sluggish water oxidation kinetics of hematite (α-Fe2O3) photoanodes, herein, an attractive surface modification strategy is developed to successively deposit ultrathin CoOx overlayer and Ni single atoms on titanium (Ti)-doped α-Fe2O3 (Ti:Fe2O3) nanorods through a two-step atomic layer deposition (ALD) and photodeposition process. The collaborative decoration of ultrathin CoOx overlayer and Ni single atoms can trigger a big boost in photo-electrochemical (PEC) performance for water splitting over the obtained Ti:Fe2O3/CoOx/Ni photoanode, with the photocurrent density reaching 1.05 mA cm−2 at 1.23 V vs. reversible hydrogen electrode (RHE), more than three times that of Ti:Fe2O3 (0.326 mA cm−2). Electrochemical and electronic investigations reveal that the surface passivation effect of ultrathin CoOx overlayer can reduce surface carrier recombination, while the catalysis effect of Ni single atoms can accelerate water oxidation kinetics. Moreover, theoretical calculations evidence that the synergy of ultrathin CoOx overlayer and Ni single atoms can lower the adsorption free energy of OH* intermediates and relieve the potential-determining step (PDS) for oxygen evolution reaction (OER). This work provides an exemplary modification through rational engineering of surface electrochemical and electronic properties for the improved PEC performances, which can be applied in other metal oxide semiconductors as well.
    Relation: Small 19(7), 2203838
    DOI: 10.1002/smll.202203838
    Appears in Collections:[Graduate Institute & Department of Electrical Engineering] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML40View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback