淡江大學機構典藏:Item 987654321/125724
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64185/96959 (66%)
造访人次 : 11685656      在线人数 : 338
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125724


    题名: Atomic nickel on graphitic carbon nitride as a visible light-driven hydrogen production photocatalyst studied by x-ray spectromicroscopy
    作者: Yu Cheng Huang, Yanrui Li, K. Thanigai Arul, Takuji Ohigashi, Ta Thi Thuy Nga, Ying Rui Lu, Chi Liang Chen, Jeng Lung Chen, Shaohua Shen, Way Faung Pong, Chung Li Dong, Wu Ching Chou
    关键词: Single-Atom Catalysts;X-Ray Absorption Spectroscopy (XAS);Scanning Transmission X-Ray Microscopy (STXM);Defect;Local Atomic Structure
    日期: 2023-03-29
    上传时间: 2024-07-31 12:10:30 (UTC+8)
    出版者: American Chemical Society
    摘要: The photocatalytic production of solar hydrogen through water splitting by graphitic carbon nitride (g-C3N4) has gained substantial interest due to its advantageous characteristics, such as eco-friendliness, wealth on the earth, favorable bandgap, and easy preparation. Nevertheless, the performance for photocatalytic overall water splitting has been significantly restricted owing to the rapid recombination of charge carriers and slow catalytic kinetics. This investigation demonstrates the utilization of a single-atom Ni-terminating agent to coordinate with the heptazine moieties of g-C3N4, resulting in the formation of a new electronic orbital. g-C3N4 with single-atom Ni-termination can achieve highly efficient photocatalytic overall water splitting into H2 and H2O2 upon visible light irradiation, without requiring the use of any additional cocatalysts. The underlying cause of the enhanced photocatalytic performance of single-atom Ni-incorporated g-C3N4 in hydrogen evolution reaction is identified using synchrotron X-ray spectroscopy and microscopy. The X-ray spectro-microscopic results discover that the new hybrid orbital that is critical for optimizing photocatalysis is associated with carbon defects. The atomic and electronic structures and the band gap of g-C3N4 are adjusted by the new hybrid orbital. Moreover, it synergistically enhances visible light absorption, thereby promoting the separation and transfer of photogenerated charge carriers. The single-atom Ni and the adjacent C atom are recognized as the active sites for water oxidation and reduction, respectively, supporting the efficient photocatalytic splitting of water via a two-electron transfer pathway. This study demonstrated a promising material design for promoting photocatalytic activity in solar energy conversion applications.
    關聯: ACS Sustainable Chemistry & Engineering 11(14), 5390-5399
    DOI: 10.1021/acssuschemeng.2c06497
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML36检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈