淡江大學機構典藏:Item 987654321/125647
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9910542      在线人数 : 19933
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125647


    题名: Recent Progress in Machine Learning Approaches for Predicting Carcinogenicity in Drug Development
    作者: Ho, Trang-thi
    关键词: Artificial intelligence;carcinogenicity prediction;drug development;machine learning;predictive modeling;safety assessment;toxicogenomics;computational toxicology
    日期: 2024-05-27
    上传时间: 2024-07-31 12:06:08 (UTC+8)
    出版者: Taylor and Francis Ltd.
    摘要: Introduction
    This review explores the transformative impact of machine learning (ML) on carcinogenicity prediction within drug development. It discusses the historical context and recent advancements, emphasizing the significance of ML methodologies in overcoming challenges related to data interpretation, ethical considerations, and regulatory acceptance.

    Areas covered
    The review comprehensively examines the integration of ML, deep learning, and diverse artificial intelligence (AI) approaches in various aspects of drug development safety assessments. It explores applications ranging from early-phase compound screening to clinical trial optimization, highlighting the versatility of ML in enhancing predictive accuracy and efficiency.

    Expert opinion
    Through the analysis of traditional approaches such as in vivo rodent bioassays and in vitro assays, the review underscores the limitations and resource intensity associated with these methods. It provides expert insights into how ML offers innovative solutions to address these challenges, revolutionizing safety assessments in drug development.
    關聯: Expert Opinion on Drug Metabolism & Toxicology
    DOI: 10.1080/17425255.2024.2356162
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML72检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈