淡江大學機構典藏:Item 987654321/125605
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8186736      在线人数 : 7547
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125605


    题名: Ferromagnetic single-atom spin catalyst for boosting water splitting
    作者: Tao Sun, Zhiyuan Tang, Wenjie Zang, Zejun Li, Jing Li , Zhihao Li, Liang Cao, Jan Sebastian Dominic Rodriguez, Carl Osby M. Mariano, Haomin Xu, Pin Lyu, Xiao Hai, Huihui Lin, Xiaoyu Sheng, Jiwei Shi, Yi Zheng, Ying-Rui Lu, Qian He, Jingsheng Chen, Kostya S. Novoselov, Cheng-Hao Chuang, Shibo Xi, Xin Luo, Jiong Lu
    日期: 2023-05-25
    上传时间: 2024-07-30 12:06:54 (UTC+8)
    出版者: Springer Nature
    摘要: Heterogeneous single-atom spin catalysts combined with magnetic fields provide a powerful means for accelerating chemical reactions with enhanced metal utilization and reaction efficiency. However, designing these catalysts remains challenging due to the need for a high density of atomically dispersed active sites with a short-range quantum spin exchange interaction and long-range ferromagnetic ordering. Here, we devised a scalable hydrothermal approach involving an operando acidic environment for synthesizing various single-atom spin catalysts with widely tunable substitutional magnetic atoms (M1) in a MoS2 host. Among all the M1/MoS2 species, Ni1/MoS2 adopts a distorted tetragonal structure that prompts both ferromagnetic coupling to nearby S atoms as well as adjacent Ni1 sites, resulting in global room-temperature ferromagnetism. Such coupling benefits spin-selective charge transfer in oxygen evolution reactions to produce triplet O2. Furthermore, a mild magnetic field of ~0.5 T enhances the oxygen evolution reaction magnetocurrent by ~2,880% over Ni1/MoS2, leading to excellent activity and stability in both seawater and pure water splitting cells. As supported by operando characterizations and theoretical calculations, a great magnetic-field-enhanced oxygen evolution reaction performance over Ni1/MoS2 is attributed to a field-induced spin alignment and spin density optimization over S active sites arising from field-regulated S(p)–Ni(d) hybridization, which in turn optimizes the adsorption energies for radical intermediates to reduce overall reaction barriers.
    關聯: Nature Nanotechnology 18, p.763-771
    DOI: 10.1038/s41565-023-01407-1
    显示于类别:[物理學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML29检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈