淡江大學機構典藏:Item 987654321/125581
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64191/96979 (66%)
Visitors : 8089266      Online Users : 11547
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125581


    Title: Correlating the valence state with the adsorption behavior of a Cu-based electrocatalyst for furfural oxidation with anodic hydrogen production reaction
    Authors: Ming Yang, Yingying Li, Chung-Li Dong, Shengkai Li, Leitao Xu, Wei Chen, Jingcheng Wu, Yuxuan Lu, Yuping Pan, Yandong Wu, Yongxiang Luo, Yu-Cheng Huang, Shuangyin Wang, Yuqin Zou
    Date: 2023-06-24
    Issue Date: 2024-07-30 12:05:56 (UTC+8)
    Publisher: Wiley-VCH
    Abstract: The low-potential furfural oxidation reaction (FFOR) on a Cu-based electrocatalyst can produce H2 at the anode, thereby providing a bipolar H2 production system with an ultralow cell voltage. However, the intrinsic activity and stability of the Cu-based electrocatalyst for the FFOR remain unsatisfactory for practical applications. This study investigates the correlation between the valence state and the adsorption behavior of the Cu-based electrocatalyst in furfural oxidation. Cu0 is the adsorption site with low intrinsic activity. Cu+, which exists in the form of Cu(OH)ads in alkaline electrolytes, has no adsorption ability but can improve the performance of Cu0 by promoting the adsorption of FF. Moreover, a mixed-valence Cu-based electrocatalyst (MV Cu) with high intrinsic activity and stability is prepared electrochemically. With the MV Cu catalyst, the assembled dual-side H2 production electrolyzer has a low electricity requirement of only 0.24 kWh mH2−3 at an ultralow cell voltage of 0.3 V, and it exhibits sufficient stability. This study not only correlates the valence state with the adsorption behavior of the Cu-based electrocatalyst for the low-potential FFOR with anodic H2 production but also reveals the mechanism of deactivation to provide design principles for Cu-based electrocatalysts with satisfactory stability.
    Relation: Advanced Materials 35(39), 2304203
    DOI: 10.1002/adma.202304203
    Appears in Collections:[Graduate Institute & Department of Electrical Engineering] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML24View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback