淡江大學機構典藏:Item 987654321/125574
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64185/96959 (66%)
造访人次 : 11642357      在线人数 : 16014
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125574


    题名: Interfacial oxygen vacancy modulated ZIF-8-derived ZnO/CuS for the photocatalytic degradation of antibiotic and organic pollutants: DFT calculation and degradation pathways
    作者: Mariappan, Athibala;Mannu, Pandian;Thiruppathiraja, Thangaraj;Nga, Ta Thi Thuy;Lakshmipathi, Senthilkumar;Dong, Chung-Li;Dharman, Ranjith Kumar;Oh, Tae Hwan
    日期: 2023-11
    上传时间: 2024-07-30 12:05:35 (UTC+8)
    出版者: Elsevier
    摘要: Fabricating oxygen vacancies (Vo) is an effective approach to enhance photocatalytic performance, but its effect on the interfacial charge transfer pathway remains unelucidated to date. In this study, we used the simple aqueous solution method to create an oxygen-defected ZIF-8-derived CuS/ZnO (CZ) heterostructure, and various characterization techniques were used to investigate the prepared catalysts. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) were used to determine the surface defects caused by the CuS nanoparticles in the ZnO matrix generated from ZIF-8. The optimized CuS/ZnO (CZ-2) catalyst exhibited efficient photocatalytic performance by effectively increasing the charge separation rate of the photogenerated electrons. The photocatalytic performances of methylene orange (MO) and ciprofloxacin (CIP) using the CZ heterostructure were 99.76 % and 94.59 %, respectively, with the corresponding rate constants of 0.0695 and 0.0312 min−1 at 40 min. The electron spin resonance and scavenger tests have established that •O2− is the primary oxidative radical species involved in photocatalytic activity. In addition, the density functional theory calculations were performed to determine the degradation mechanism of CIP, and the possible pathways of CIP degradation were investigated using liquid chromatography–mass spectroscopy. This study provides new insights into the development of metal–organic frameworks and metal sulfide-based heterostructures for environmental degradation applications.
    關聯: Chemical Engineering Journal 476, 146720
    DOI: 10.1016/j.cej.2023.146720
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML42检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈