English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64185/96959 (66%)
造訪人次 : 11509571      線上人數 : 20643
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125574


    題名: Interfacial oxygen vacancy modulated ZIF-8-derived ZnO/CuS for the photocatalytic degradation of antibiotic and organic pollutants: DFT calculation and degradation pathways
    作者: Mariappan, Athibala;Mannu, Pandian;Thiruppathiraja, Thangaraj;Nga, Ta Thi Thuy;Lakshmipathi, Senthilkumar;Dong, Chung-Li;Dharman, Ranjith Kumar;Oh, Tae Hwan
    日期: 2023-11
    上傳時間: 2024-07-30 12:05:35 (UTC+8)
    出版者: Elsevier
    摘要: Fabricating oxygen vacancies (Vo) is an effective approach to enhance photocatalytic performance, but its effect on the interfacial charge transfer pathway remains unelucidated to date. In this study, we used the simple aqueous solution method to create an oxygen-defected ZIF-8-derived CuS/ZnO (CZ) heterostructure, and various characterization techniques were used to investigate the prepared catalysts. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) were used to determine the surface defects caused by the CuS nanoparticles in the ZnO matrix generated from ZIF-8. The optimized CuS/ZnO (CZ-2) catalyst exhibited efficient photocatalytic performance by effectively increasing the charge separation rate of the photogenerated electrons. The photocatalytic performances of methylene orange (MO) and ciprofloxacin (CIP) using the CZ heterostructure were 99.76 % and 94.59 %, respectively, with the corresponding rate constants of 0.0695 and 0.0312 min−1 at 40 min. The electron spin resonance and scavenger tests have established that •O2− is the primary oxidative radical species involved in photocatalytic activity. In addition, the density functional theory calculations were performed to determine the degradation mechanism of CIP, and the possible pathways of CIP degradation were investigated using liquid chromatography–mass spectroscopy. This study provides new insights into the development of metal–organic frameworks and metal sulfide-based heterostructures for environmental degradation applications.
    關聯: Chemical Engineering Journal 476, 146720
    DOI: 10.1016/j.cej.2023.146720
    顯示於類別:[電機工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML42檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋