English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9423757      線上人數 : 10469
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125555


    題名: Inference for a general family of exponentiated distributions under ranked set sampling with partially observed complementary competing risks data
    作者: Wang, Liang;Lio, Yuhlong;Tripathi, Yogesh Mani;Tsai, Tzong-Ru
    關鍵詞: Ranked set sampling;complementary competing risks model;general family of exponentiated distributions;maximum likelihood estimation;Bayesian estimateon;order restriction
    日期: 2023-12-03
    上傳時間: 2024-07-23 12:05:52 (UTC+8)
    出版者: Taylor and Francis
    摘要: Ranked set sampling (RSS) acts as an efficient way for collecting failure information due to its ability of saving testing time and cost, and this paper discusses statistical inference for complementary competing risks model under a modified RSS scheme called the maximum ranked set sampling procedure with unequal samples (MRSSU). When the lifetimes of causes of failure are characterized by a general family of exponentiated distributions with partially observed failure causes, parameter estimation is explored from classical likelihood and Bayesian approaches. Existence and uniqueness of maximum likelihood estimators for model parameters are established, and approximate confidence intervals are constructed in consequence. With respect to general flexible priors, Bayes point and interval estimates are constructed, and associated Monte-Carlo sampling is proposed for complex posterior computation. In addition, when there is extra restriction information available, likelihood and Bayes estimates are also proposed in this regard. Extensive simulation studies are conducted to investigate the performance of different methods, and a real-life example is carried out to demonstrate the applications of our results.
    關聯: Quality Technology & Quantitative Management. Accepted 03 Dec. 2023
    DOI: 10.1080/16843703.2023.2297126
    顯示於類別:[統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML57檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋