淡江大學機構典藏:Item 987654321/125551
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9385127      在线人数 : 806
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125551


    题名: Realizing High and Stable Electrocatalytic Oxygen Evolution for Iron-Based Perovskites by Co-Doping-Induced Structural and Electronic Modulation
    作者: Sixuan She, Yinlong Zhu, Xinhao Wu, Zhiwei Hu, Abhijeet Shelke, Way-Faung Pong, Yubo Chen, Yufei Song, Mingzhuang Liang, Chien-Te Chen, Huanting Wang, Wei Zhou, Zongping Shao
    日期: 2021-12-29
    上传时间: 2024-07-23 12:05:37 (UTC+8)
    出版者: Wiley
    摘要: Oxygen evolution reaction (OER) is a vital electrochemical process for various energy conversion and fuel production technologies. Co/Ni-rich perovskite oxides are extensively studied as promising alternatives to precious-metal catalysts; however, low-cost and earth-abundant iron (Fe)-rich perovskites are rarely investigated to date due to their poor activity and durability. This study reports an Fe-rich Sr0.95Ce0.05Fe0.9Ni0.1O3−δ (SCFN) perovskite oxide with minor Ce/Ni co-doping in A/B sites as a high-performance OER electrocatalyst. Impressively, SCFN shows more than an order of magnitude enhancement in mass-specific activity compared to the SrFeO3−δ (SF) parent oxide, and delivers an attractive small overpotential of 340 mV at 10 mA cm−2, outperforming many Co/Ni-rich perovskite oxides ever reported. Additionally, SCFN displays robust operational durability with negligible activity loss under alkaline OER conditions. The increased activity and stability of SCFN can be ascribed to co-doping-induced synergistic promotion between structural and electronic modulation, where Ce doping facilitates the formation of a 3D corner-sharing cubic structure and Ni doping gives rise to strong electronic interactions between active sites, which is key to achieving a highly active long-life catalyst. Importantly, this strategy is universal and can be extended to other Fe-based parent perovskite oxides with high structural diversity.
    關聯: Advanced Functional Materials 32(15), 2111091
    DOI: 10.1002/adfm.202111091
    显示于类别:[物理學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML38检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈