淡江大學機構典藏:Item 987654321/125337
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8368924      線上人數 : 7751
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125337


    題名: Apply Machine-Learning Model for Clustering Rowing Players
    作者: Wilaikaew, Patcharawit;Noisriphan, Watchara;Chen, Chien-chang;Charoensuk, Jirawan;Ruengitinun, Somchoke;Chootong, Chalothon
    日期: 2024-03-07
    上傳時間: 2024-03-15 12:05:47 (UTC+8)
    摘要: Rowing, as a sport composed of single player or multiple players, performs body movements under certain rhythm with slight variation. The analysis of rhythm alternation or match is important on rowing research and merit our study. Therefore, this study analyzes the rowing movements by the following three procedures, rowing cycle segmentation, feature extraction, rowing cycle clustering. The rowing cycle segmentation procedure segments each player's video to videos of single cycle under the analysis of MediaPipe detected joint points. The feature extraction procedure calculates features from each rowing cycle by selecting amplitudes, angles, angular speeds of 4 selected joint points. At last, the rowing cycle clustering procedure analyzes all one-cycled videos using above features by different clustering and scoring methods. Three clustering methods, including K-means, Birch, and Gaussian-mixture, are experimented in this study for finding the most efficient one. A hybrid measurement from the Silhouette score, the Calinski-Harabasz index, and the Davies-Bouldin index, is proposed for finding the optimal clusters number. Experimental results of 15 players’ videos show that applying K-means clustering algorithm with the proposed hybrid measurement performs better for finding the rowing group.
    關聯: ICNCC '23: Proceedings of the 2023 12th International Conference on Networks, Communication and Computing
    DOI: 10.1145/3638837.3638872
    顯示於類別:[資訊工程學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML61檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋