淡江大學機構典藏:Item 987654321/125336
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8550015      線上人數 : 8286
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125336


    題名: Automatic Anomaly Mark Detection on Fabric Production Video by Artificial Intelligence Techniques
    作者: Rueangsuwan, Nantachaporn;Jariyapongsgul, Nathapat;Chen, Chien-chang;Lin, Cheng-shian;Ruengittinun, Somchoke;Chootong, Chalothon
    關鍵詞: Training;Knowledge engineering;Technological innovation;Image segmentation;Production;Fabrics;Manufacturing
    日期: 2022-12-22
    上傳時間: 2024-03-15 12:05:43 (UTC+8)
    出版者: IEEE
    摘要: In the previous era, humans played important roles in all aspects of industrial work. However, they indisputably made many errors that can be mitigated by automated manufacturing, thus revealing the importance of the latter. In this paper, an autoencoder-based fabric-defect detection method via video is presented. The fabric-production video is segmented using frames to produce images, and then a VGG16-based autoencoder is applied to reconstruct the original image. In the proposed scheme, each fabric-production image is normalized to 256 x 256 pixels, which provided excellent results compared with using various margin sizes in our experiments. We used the structural similarity index (SSIM), which measures similarity when checking whether image regions are normal or defective. Moreover, a masking algorithm is utilized to improve detection accuracy. Based on our experiments, we found that 0.5 is an appropriate value for setting the SSIM threshold as it produced the best detection performance with a defect detection accuracy of ~99%.
    關聯: 2022 IEEE 5th International Conference on Knowledge Innovation and Invention (ICKII )
    DOI: 10.1109/ICKII55100.2022.9983584
    顯示於類別:[資訊工程學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML73檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋