淡江大學機構典藏:Item 987654321/125336
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64176/96941 (66%)
造访人次 : 9110459      在线人数 : 12105
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125336


    题名: Automatic Anomaly Mark Detection on Fabric Production Video by Artificial Intelligence Techniques
    作者: Rueangsuwan, Nantachaporn;Jariyapongsgul, Nathapat;Chen, Chien-chang;Lin, Cheng-shian;Ruengittinun, Somchoke;Chootong, Chalothon
    关键词: Training;Knowledge engineering;Technological innovation;Image segmentation;Production;Fabrics;Manufacturing
    日期: 2022-12-22
    上传时间: 2024-03-15 12:05:43 (UTC+8)
    出版者: IEEE
    摘要: In the previous era, humans played important roles in all aspects of industrial work. However, they indisputably made many errors that can be mitigated by automated manufacturing, thus revealing the importance of the latter. In this paper, an autoencoder-based fabric-defect detection method via video is presented. The fabric-production video is segmented using frames to produce images, and then a VGG16-based autoencoder is applied to reconstruct the original image. In the proposed scheme, each fabric-production image is normalized to 256 x 256 pixels, which provided excellent results compared with using various margin sizes in our experiments. We used the structural similarity index (SSIM), which measures similarity when checking whether image regions are normal or defective. Moreover, a masking algorithm is utilized to improve detection accuracy. Based on our experiments, we found that 0.5 is an appropriate value for setting the SSIM threshold as it produced the best detection performance with a defect detection accuracy of ~99%.
    關聯: 2022 IEEE 5th International Conference on Knowledge Innovation and Invention (ICKII )
    DOI: 10.1109/ICKII55100.2022.9983584
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML73检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈