English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62830/95882 (66%)
Visitors : 4062598      Online Users : 420
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/125302


    Title: Salt Removal by Chemically Modified Graphene in Capacitive Deionization (CDI)
    Authors: Peng, Ching-Yu;Chen, Yi-Fang;Wang, Ching-Yi
    Keywords: capacitive deionization (CDI);graphene;chemical modification;strong acid;sulfonation
    Date: 2022-04-24
    Issue Date: 2024-03-14 12:05:20 (UTC+8)
    Publisher: MDPI AG
    Abstract: Obtaining clean water from salt water by capacitive deionization (CDI) with chemically modified graphene (rGO) was explored in this study. Strong acid (HNO3:H2SO4 = 2:1) was employed to modify rGO to enhance its hydrophilicity and electrochemical properties. Characteristics of rGO with/without acid modification were analyzed by XRD, SEM, FTIR, contact angle, BET, and cyclic voltammetry (CV). Contributions of sulfonic acid groups, hydroxyl groups, and NO2 stretching after acid modification resulted in better wettability and higher specific capacitance of rGO. The contact angle for rGO dropped from 84.9° to 35.1° (am-rGO), indicating improved hydrophilicity of rGO with acid modification. The specific capacitance of am-rGO can reach 150.2 F/g at the scan rate of 1 mV/s. The average NaCl electrosorption capacity of the CDI process with am-rGO was 0.63 mg NaCl/g electrode (10.86 μmol NaCl/g electrode), which indicated rGO with acid modification can enhance the electrosorption capacity by 3.9 times. This study demonstrated that chemical modification can significantly improve the hydrophilicity, electrochemical properties, and electrosorption performance of rGO, which has potential for applications to other carbon-based materials for CDI systems to improve salt removal efficiency.
    Relation: Water 14(9), 1379
    DOI: 10.3390/w14091379
    Appears in Collections:[水資源及環境工程學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML4View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback